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We consider a thin homogeneous shell subjected to an arbitrary
load causing loss of stability, We assume that the shell has some ini-
tial irregularities in its middle surface which can be described in
terms of certain initial displacements. When the load is applied, these
initial irregularities begin to develop due to creep and cause a redis-
tribution of stresses over both the thickness and the entire area of the
shell. This process of stress redistribution may be so considerable that
at a certain moment the equilibrium state of the shell may become
unstable in Fuler's sense, i.e., at a certain moment several modes
of equilibrium may be possible, transition to any one of these being
instantaneous. We shall call this moment the “critical moment" of
loss of stability of the shell.

The deviation of the subcritical stress and strain state of an actual
shell from the basic state corresponding to a perfectly smooth shell
can be described by a system of equations in the stress and deflection
functions, assuming that the quantities characterizing these deviations
satisfy linearlized creep relations analogous to the relations for visco-
elastic bodies. This system of equations must be combined with a
system of stability equations which takes into account the stresses and
strains defined by the system of equations of the subcritical state.

§1, Formulation of the problem. We assume that
the subcritical stress components can be represented

by
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Here o,,,° are the stress components of the basic
state; Typ and Mp,, are the additional specific forces
and moments referred to the middle surface of the
shell; z is the distance from the middle surface; and h
is the thickness of the shell.

It should be pointed out that, strictly speaking, in
the case of creep, when the physical relations are non-
linear, the assumption of a linear stress distribution
over the shell thickness contradicts the hypothesis of
straight normals. But if the subcritical state of the
shell differs only slightly from the basic state oy,,°
corresponding to a perfectly smooth shell, the physical
relations can be linearized with respect to the basic
state. This eliminates the contradiction. In the proc-
ess of creep the equilibrium equations of the subcriti-
cal state take the form

ar aT aM

my | Clmg
or + dy =0, dx +

ER
gy

= Qn, (1.2)

8 aQ Tn , T 8
—a(i—l -+ —6‘5 —+ ﬁﬁ T R Tyykay — Toortos — 2T 13%12 = 0 (1.3)

(m =1, 2).

Here Qy, is the specific shear force, wmp are the
parameters of variation of curvature and twist of the
middle surface; and Ry, is the radius of the shell.

The system of equations (1.2) and (1.3) with the as-
sociated relations between stress and strain describes
the process of buckling of the shell in time and the
process of redistribution of stresses. Suppose that at
a certain moment the shell becomes unstable, i.e., the

shell instantaneously goes over into the neighboring
equilibrium state characterized by forces Ty, *Tyypn™
Q * Qm™ moments My, + Mpyp™ and curvatures
“mn + “mnt. Setting up the equilibrium equations for
this neighboring state and subtracting Eqgs. (1.2) and
(1.3), we obtain the stability equations
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where the nonlinear terms have been discarded.

§2. Physical relations. Equations (1.2)—(1.5) are
not a closed system of equations for the problemposed,
because they must be combined with equations deter-
mining the relationship between the stress and strain
components during creep and at the moment of loss of
stability together with the relations between the strain
components and the displacement components.

Let the equation of state for creep be

Pli= g (S, 1) St 2.1)
while the components of the creep strain rate tensor
Pmn and the components of the stress deviator sp
satisfy the relations of flow theory
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Here the repetition of indices denotes summation.

We denote the stress state corresponding to a per-
fectly smooth shell without initial irregularities by 0';
and call it the basic stress state. Then the stress
state of an actual shell in creep will deviate from the
basic stress state. Hence the stress components and
creep strain rates can be written as follows:
I':lml = }’:::1 + 6[’:;111 . (2-3)
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We can now rewrite Egs. (2.1) and {2.2):
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At the same time, for the basic state Egs. (2.1) and
(2.2) also hold:
pi-o = g(siav pic) Jia’ p7;:n = 3/2{:7 (5i°v pio)sm; .
Now, representing the right-hand sides of Egs. (2.4)
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as a series in the neighborhood of the basic state and
retaining only the linear terms, we obtain (see [1, 2]
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Introducing the new time variable
1
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we obtain
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For the initial moment of time we take Hooke’s law
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Fig. 1

After integrating Eqs. (2.7) with initial conditions
(2.8), we obtain

Osmn = /3 EIO&mn — o, *Gbo; . 2.9)
Here
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For the shell strain increments we use the expres-
sions
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Here npyp°, w° are the initial curvatures and the
initial deflection before application of load.

§3. Forces and moments. We now write expres-
sions for the forces and moments referred to the mid-
dle surface of the shell
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Substituting the stresses (2.9) into Egs. (3.1) and
eliminating the strains, in accordance with (2.10), we
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Similarly, we obtain the specific forces
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Fdr the moment and force increments at loss of
stability we have the following relations:
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The expressions for T*mn have been linearized with
respect to w*,

§4, Equations of stability of a flat shell of general
form. Introducing the force functions for Tmp and
Tin, We satisfy the first equations of (1.2) and (1.4),
while to determine the force functions we set up the
strain continuity equations. The remaining equilibrium
equations (1.2) and (1.4) are written in terms of dis-
placement, using relations (3.3) and (3.5). After per-
forming all these operations, we finally obtain the fol-
lowing system of equations of the subcritical state:
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and the system of stability equations
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§5. Closed cylindrical shell in axial compression.
Let us consider the stability of a closed cylindrical
shell subjected to uniform axial compression (Ry; =%,
Ry = R, @ = =1, ayy = a9y = 0) using for this purpose

the simple creep law
pi = Bgy. (5.1)

Then the system of equations (4.1) becomes
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To solve the problem of selecting the mode of de-
flection before and after loss of stability and also the
initial mode of deflection, we turn to the nonlinear
problem of the postbuckling behavior of a cylindrical
shell, which has been studied by a number of workers
[3—8]. These investigations employ various repre-
sentations of the postbuckling mode of deflection, but
they all contain a common element which can be writ-
ten as follows:
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Using this expression for the postbuckling deflec- .
tion as a basis, we may write

w® = hE°sin? w = h{ (v) sin? 2 4 hg, (1)1(5.3)
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As a result, after loss of stability we have
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Solving the problem in its present form does not

yield 5% Integrating the system of equations (5.2}, we
obtain
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‘Eliminating w, F, and F* from the second equation
of the system (4.2) and integrating it by the Bubnov-
Galerkin method, we get the equation for the critical
time parameter v =71,
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Figure 1 gives the dependence of the critical axial
strain of the basic state on the initial stresses and the
amplitude of the initial irregularities. The following
notation has been used:

s°=¢/g", e =5"(141,)

where g is the upper critical stress for a perfectly
smooth elastic shell (¢" = 0.605). The wave parameters
¢ and 7 were selected from the condition of minimum
T4. Values of the critical strain parameter € are
plotted along the abcissa axis.

Fig. 2

At T =0 Eq. (5.5) leads to the solution of the problem of stability
of an elastic shell with account for initial irregularities. Figure 2
gives the dependence of the critical stress for an elastic shell on the
amplitude of the initial deflection ¢° . The graph shows that the mag-
nitude of the critical stress changes sharply at very small initial deflec-
tions, This suggests that in tests it is very difficult to obtain g* = 0.605
or, what is the same thing, ¢°= 1.
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